1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
//! # Objective-C interface and runtime bindings
//!
//! Objective-C is[^note] the standard programming language on Apple platforms
//! like macOS, iOS, iPadOS, tvOS and watchOS. It is an object-oriented
//! language centered around "sending messages" to its instances - this can
//! for the most part be viewed as a simple method call.
//!
//! Most of the core libraries and frameworks that are in use on Apple systems
//! are written in Objective-C, and hence we would like the ability to
//! interract with these using Rust; this crate enables you to do that, in
//! as safe a manner as possible.
//!
//! [^note]: Yes, I know, "was", Swift now exists. All the existing frameworks
//! are written in Objective-C though, so the point still holds.
//!
//!
//! ## Basic usage
//!
//! This example illustrates major parts of the functionality in this crate:
//!
//! First, we get a reference to the `NSObject`'s [`runtime::Class`] using the
//! [`class!`] macro.
//! Next, we creates a new [`runtime::Object`] pointer, and ensure it is
//! deallocated after we've used it by putting it into an [`rc::Owned`]
//! [`rc::Id`].
//! Now we're free to send messages to the object to our hearts desire using
//! the [`msg_send!`] or [`msg_send_id!`] macros (depending on the return type
//! of the method).
//! Finally, the `Id<Object, _>` goes out of scope, and the object is released
//! and deallocated.
//!
#![cfg_attr(feature = "apple", doc = "```")]
#![cfg_attr(not(feature = "apple"), doc = "```no_run")]
//! use objc2::{class, msg_send, msg_send_id};
//! use objc2::ffi::NSUInteger;
//! use objc2::rc::{Id, Owned, Shared};
//! use objc2::runtime::Object;
//!
//! let cls = class!(NSObject);
//!
//! // Creation
//!
//! let obj1: Id<Object, Owned> = unsafe { msg_send_id![cls, new] };
//! let obj2: Id<Object, Owned> = unsafe {
//! // Equivalent to using `new`
//! msg_send_id![msg_send_id![cls, alloc], init]
//! };
//!
//! // Usage
//!
//! let hash1: NSUInteger = unsafe { msg_send![&obj1, hash] };
//! let hash2: NSUInteger = unsafe { msg_send![&obj2, hash] };
//! assert_ne!(hash1, hash2);
//!
//! let is_kind: bool = unsafe { msg_send![&obj1, isKindOfClass: cls] };
//! assert!(is_kind);
//!
//! // We're going to create a new reference to the first object, so
//! // relinquish mutable ownership.
//! let obj1: Id<Object, Shared> = obj1.into();
//! let obj1_self: Id<Object, Shared> = unsafe { msg_send_id![&obj1, self] };
//! let is_equal: bool = unsafe { msg_send![&obj1, isEqual: &*obj1_self] };
//! assert!(is_equal);
//!
//! // Deallocation on drop
//! ```
//!
//! Note that this very simple example contains **a lot** of `unsafe` (which
//! should all ideally be justified with a `// SAFETY` comment). This is
//! required because our compiler can verify very little about the Objective-C
//! invocation, including all argument and return types used in [`msg_send!`];
//! we could have just as easily accidentally made `hash` an `f32`, or any
//! other type, and this would trigger undefined behaviour!
//!
//! Making the ergonomics better is something that is currently being worked
//! on, the [`foundation`] module contains more ergonomic usage of at
//! least parts of the `Foundation` framework.
//!
//! Anyhow, all of this `unsafe` nicely leads us to another feature that this
//! crate has:
//!
//! [`runtime::Class`]: crate::runtime::Class
//! [`runtime::Object`]: crate::runtime::Object
//! [`rc::Owned`]: crate::rc::Owned
//! [`rc::Id`]: crate::rc::Id
//! [`foundation`]: crate::foundation
//!
//!
//! ## Encodings and message type verification
//!
//! The Objective-C runtime includes encodings for each method that describe
//! the argument and return types. See the [`objc2-encode`] crate for the
//! full overview of what this is (its types are re-exported in this crate).
//!
//! The important part is: To make message sending safer, all arguments and
//! return values for messages must implement [`Encode`]. This allows the Rust
//! compiler to prevent you from passing e.g. a [`Box`] into Objective-C,
//! which would both be UB and leak the box.
//!
//! Furthermore, we can take advantage of the encodings provided by the
//! runtime to verify that the types used in Rust actually match the types
//! encoded for the method. This is not a perfect solution for ensuring safety
//! (some Rust types have the same Objective-C encoding, but are not
//! equivalent), but it gets us much closer to it!
//!
//! To use this functionality, enable the `"verify_message"` cargo feature
//! while debugging. With this feature enabled, encodings are checked every
//! time you send a message, and the message send will panic if they are not
//! equivalent.
//!
//! To take the example above, if we changed the `hash` method's return type
//! as in the following example, it panics when the feature is enabled:
//!
#![cfg_attr(
all(feature = "apple", feature = "verify_message"),
doc = "```should_panic"
)]
#![cfg_attr(
not(all(feature = "apple", feature = "verify_message")),
doc = "```no_run"
)]
//! # use objc2::{class, msg_send, msg_send_id};
//! # use objc2::rc::{Id, Owned};
//! # use objc2::runtime::Object;
//! #
//! # let cls = class!(NSObject);
//! # let obj1: Id<Object, Owned> = unsafe { msg_send_id![cls, new] };
//! #
//! // Wrong return type - this is UB!
//! let hash1: f32 = unsafe { msg_send![&obj1, hash] };
//! ```
//!
//! [`objc2-encode`]: objc2_encode
//! [`Box`]: std::boxed::Box
//!
//!
//! ## Crate features
//!
//! This crate exports several optional cargo features, see [`Cargo.toml`] for
//! an overview and description of these.
//!
//! [`Cargo.toml`]: https://github.com/madsmtm/objc2/blob/master/objc2/Cargo.toml
//!
//!
//! ## Support for other Operating Systems
//!
//! The bindings can be used on Linux or *BSD utilizing the
//! [GNUstep Objective-C runtime](https://www.github.com/gnustep/libobjc2),
//! see the [`objc-sys`][`objc_sys`] crate for how to configure this.
//!
//!
//! ## Other functionality
//!
//! That was a quick introduction, this library also has [support for handling
//! exceptions][exc], [the ability to dynamically declare Objective-C
//! classes][declare], [advanced reference-counting utilities][rc], and more -
//! peruse the documentation at will!
//!
//! [exc]: crate::exception
//! [declare]: crate::declare
//! [rc]: crate::rc
#![no_std]
#![cfg_attr(
feature = "unstable-autoreleasesafe",
feature(negative_impls, auto_traits)
)]
#![cfg_attr(feature = "unstable-c-unwind", feature(c_unwind))]
#![cfg_attr(feature = "unstable-docsrs", feature(doc_auto_cfg))]
#![warn(elided_lifetimes_in_paths)]
#![warn(missing_docs)]
#![deny(non_ascii_idents)]
#![warn(unreachable_pub)]
#![deny(unsafe_op_in_unsafe_fn)]
#![warn(clippy::cargo)]
#![warn(clippy::ptr_as_ptr)]
// Update in Cargo.toml as well.
#![doc(html_root_url = "https://docs.rs/objc2/0.3.0-beta.3.patch-leaks.3")]
#[cfg(not(feature = "alloc"))]
compile_error!("The `alloc` feature currently must be enabled.");
#[cfg(not(feature = "std"))]
compile_error!("The `std` feature currently must be enabled.");
extern crate alloc;
extern crate std;
// The example uses NSObject without doing the __gnustep_hack
#[cfg(all(feature = "apple", doctest))]
#[doc = include_str!("../README.md")]
extern "C" {}
pub use objc2_encode as encode;
pub use objc_sys as ffi;
#[doc(no_inline)]
pub use objc2_encode::{Encode, EncodeArguments, Encoding, RefEncode};
pub use crate::class_type::ClassType;
pub use crate::message::{Message, MessageArguments, MessageReceiver};
#[cfg(feature = "malloc")]
pub use crate::verify::VerificationError;
#[cfg(feature = "objc2-proc-macros")]
#[doc(hidden)]
pub use objc2_proc_macros::__hash_idents;
#[cfg(not(feature = "objc2-proc-macros"))]
#[doc(hidden)]
#[macro_export]
macro_rules! __hash_idents {
// Noop; used to make our other macros a bit easier to read
($($x:tt)*) => {$($x)*};
}
#[doc(hidden)]
pub mod __macro_helpers;
mod cache;
mod class_type;
pub mod declare;
pub mod exception;
#[cfg(feature = "foundation")]
pub mod foundation;
mod macros;
mod message;
pub mod rc;
pub mod runtime;
#[cfg(test)]
mod test_utils;
#[cfg(feature = "malloc")]
mod verify;
/// Hacky way to make GNUStep link properly to Foundation while testing.
///
/// This is a temporary solution to make our CI work for now!
#[doc(hidden)]
#[cfg(feature = "gnustep-1-7")]
pub mod __gnustep_hack {
use super::runtime::Class;
extern "C" {
// The linking changed in libobjc2 v2.0
#[cfg_attr(feature = "gnustep-2-0", link_name = "._OBJC_CLASS_NSObject")]
#[cfg_attr(not(feature = "gnustep-2-0"), link_name = "_OBJC_CLASS_NSObject")]
static OBJC_CLASS_NSObject: Class;
// Others:
// __objc_class_name_NSObject
// _OBJC_CLASS_REF_NSObject
}
pub unsafe fn get_class_to_force_linkage() -> &'static Class {
unsafe { core::ptr::read_volatile(&&OBJC_CLASS_NSObject) }
}
#[test]
fn ensure_linkage() {
unsafe { get_class_to_force_linkage() };
}
}